This firm represents East Contra Costa Irrigation District ("ECCID"), an irrigation district encompassing approximately 20,000 acres located in the eastern portion of Contra Costa County, California. ECCID supplies agricultural irrigation water and landscape irrigation water to lands within its boundary. Additionally, ECCID sells a quantity of water to the Contra Costa Water District for municipal and industrial use pursuant to a February 22, 2000 agreement and to the City of Brentwood for municipal and industrial use pursuant to a December 14, 1999 agreement.

ECCID’s water rights consist of pre-1914 and post-1914 appropriative rights, all of which are confirmed in a contract between ECCID and the State of California acting by and through its Department of Water Resources for the assurance of a dependable water supply of suitable quality, dated January 7, 1981, as amended April 11, 1991 and February 7, 2000 (the “DWR-ECCID contract”). ECCID makes its water diversions pursuant to its water rights and under the DWR-ECCID contract at its diversion point in Old River at Indian Slough, through a main canal with a series of seven pump-lift stations and a series of seven lateral canals, running to the North and to the South.

The DWR-ECCID contract, as implied in its title, recognizes county of origin and water shed protection concepts and, essentially, guarantees a certain level of water quality at ECCID’s point of diversion and recognizes the District’s right to divert up to 50,000 acre feet of water per year at a rate of 200 cubic feet per second at such point of diversion, notwithstanding operation of the State Water Project.

The impact of various alternatives being considered under the Bay Delta Conservation Plan on ECCID’s rights under the DWR-ECCID contract should be analyzed, in particular as relates to the water quality assurances provided therein to ECCID.

Additionally, the impact of various proposed alignments in the Bay Delta Conservation Plan on ECCID’s main canal running from Indian Slough and on the various laterals utilized for delivery of ECCID water, and in particular the western alignments, should also be carefully analyzed.